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Abstract. We investigate numerical methods for solving large-scale saddle point systems which
arise during the feedback control of flow problems. We focus on the Stokes equations that describe
instationary, incompressible flows for low and moderate Reynolds numbers. After a mixed finite
element discretization [23] we get a differential-algebraic system of differential index two [45]. To
reduce this index, we follow the analytic ideas of Raymond [34, 35, 36] coupled with the projection
idea of Heinkenschloss et al. [22]. Avoiding this explicit projection leads to solving a series of large-
scale saddle point systems. In this paper we construct iterative methods to solve such saddle point
systems by deriving efficient preconditioners based on the approaches of Wathen et al. [19, 42]. In
addition, the main results can be extended to the non-symmetric case of linearized Navier-Stokes
equations. We conclude with numerical examples showcasing the performance of our preconditioned
iterative saddle point solver.
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1. Introduction. Stabilization of flow problems is crucial for many areas of en-
gineering, for example the automotive and aerospace industries, as well as nanotech-
nology. In the latter case of microfluidic structures, we often encounter flow problems
at moderate Reynolds numbers that do not require turbulence modeling [24]. In this
paper, we are concerned with such a setting; therefore, we follow the Riccati-based
feedback approach for stabilization of incompressible flow problems [6]. In contrast to
the common idea of distributed control, we consider boundary control, which is more
natural in a technical implementation. The analytic approach for feedback boundary
stabilization of Stokes and linearized Navier-Stokes equations was given by Raymond
in [34, 35, 36]. Raymond used the Leray projector to project the velocity functions
onto the space of divergence-free vector functions [18], in order to deal with the al-
gebraic constrains imposed by the incompressibility condition. Following Raymond’s
analytic approach, Bänsch and Benner investigated several ideas for the numerical
treatment of the Leray projection in [6]. One of these ideas was to use the projection
from balanced truncation model order reduction as discussed by Heinkenschloss et.
al in [22].

This paper is a first step towards a thorough numerical treatment of the Leray projec-
tion, which is the key to robust implementations of optimal control for flow problems.
We consider a symmetric and linear approach for instationary, incompressible flow
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problems, i.e., the Stokes equations,

∂

∂t
v(t,x)− 1

Re
∆v(t,x) +∇p(t,x) = 0,

∇ · v(t,x) = 0,

 on (0,∞)× Ω, (1.1)

with the time t ∈ (0,∞), the spatial variable x ∈ Ω, the velocity field v(t,x) ∈ R2,
the pressure p(t,x) ∈ R and the Reynolds number Re ∈ R+. Additionally, we have
Ω ⊂ R2 as a bounded and connected domain with boundary Γ = ∂Ω, some Dirichlet
boundary conditions and appropriate initial conditions.

First, we show in Section 2 that the discretized system from the feedback control
approach leads to differential algebraic equations. After showing why the projection
idea of [22] can be used as numerical realization of the Leray projector, we end up
with large-scale saddle point systems as the major ingredients to compute the Riccati
feedback via this projection approach. In Section 3, we introduce the solution strategy
for these saddle point systems based on the ideas of [19, 42]. Afterwards, we show
numerical examples in Section 4 and summarize the ideas and results in Section 5.

2. Discretization. As it is common in instationary control problems [15, 22, 4,
3] we apply the method of lines [41] to the Stokes equations, which means we discretize
(1.1) with a mixed finite element method [23] in space and get the following system
of differential-algebraic equations

M
d

dt
z(t) = Az(t) +Gp(t) + f(t), (2.1a)

0 = GT z(t), (2.1b)

with the discretized velocity z(t) ∈ Rnv and pressure p(t) ∈ Rnp , the symmetric pos-
itive definite mass matrix M ∈ Rnv×nv , the symmetric positive semi-definite system
matrix A ∈ Rnv×nv and the discretized gradient G ∈ Rnv×np of rank np. For P2−P1

Taylor-Hood finite elements, we have nv > np [23]. The source term f(t) describes the
feedback influence via the boundary and can be expressed as f(t) = Bu(t) [6, Section
2], with the boundary control u(t) ∈ Rnr and the input operator B ∈ Rnv×nr that
maps the control onto the corresponding boundary nodes. Since in general, one can
only observe the velocity in parts of the domain we add the output equation

y(t) = C z(t), (2.1c)

with the output y(t) ∈ Rna and the output operator C ∈ Rna×nv that selects the part
of the domain where we want to measure the velocity, which is in our case a part of
the outflow boundary.

Equations (2.1a)-(2.1b) represent a differential-algebraic system (DAE) of differential
index two [45], written in a compact form as the matrix pencil([

A G
GT 0

]
,

[
M 0
0 0

])
(2.2)

with a singular left hand side coefficient matrix

[
M 0
0 0

]
. Because the solution set

does not lie in an affine subspace but on a (hidden) manifold of the Euclidean space,
we face some additional difficulties referring to the solvability (see, e.g., [45]). To
avoid this problem we use the idea of index reduction described in [22, Section 3]
which is demonstrated in the next subsection for descriptor systems like (2.1).
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2.1. Projection Method. First, we show how the idea of index reduction by
Heinkenschloss et al. [22], used for balanced truncation model order reduction of
descriptor systems (2.1), represents a numerical realization of the Leray projector.
Namely, we can convert (2.1) into a generalized state space system by using the
projector

Π := I −G(GTM−1G)−1GTM−1,

defined in [22, Section 3]. To apply the analytic approach by Raymond [35] using
the Leray projection, we need a self-adjoint projector onto the space of divergence
free velocity functions. Hence, if w(t) lies in the range of such a projector, the
algebraic constraint GTw(t) = 0 is fulfilled. Since range

(
ΠT
)

= null
(
GT
)
, ΠT has

the property ΠTw(t) = w(t). We call

(x,y)Rnv := xTy, ∀x,y ∈ Rnv

the inner product of the Euclidean space Rnv and

< x,y >M := (Mx,y)Rnv = xTMy, ∀x,y ∈ Rnv

the M-inner product for a symmetric matrix M ∈ Rnv×nv . It is easily shown that

< ΠTx,y >M= (MΠTx,y)Rnv = (Mx, ΠTy)Rnv =< x, ΠTy >M ∀x,y ∈ Rnv ,

such that ΠT is self-adjoint with respect to the M -inner product. Additionally,
null

(
ΠT
)

= range
(
M−1G

)
which represents the curl-free components in the nullspace

of ΠT . Finally, ΠT decomposes Rnv into the direct sum of the two spaces Hdiv0(Rnv ),
the space of divergence-free vector functions, and Hcurl0(Rnv ), the space of curl-free
vector functions [18]. Because projectors are unique we have ΠT as the discrete ver-
sion of the Leray projector with respect to the M -inner product, which is the discrete
version of the L2-inner product.

The projector ΠT ensures that the solution fulfills the algebraic equation (2.1b) and
simultaneously resides in the correct solution manifold, the so called hidden manifold
[45] defined by

0 = GTM−1Az(t) +GTM−1Gp(t) +GTM−1Bu(t).

Thus, the system (2.1) reduces to

ΠMΠT d

dt
z(t) = ΠAΠT z(t) +ΠBu(t), (2.3a)

y(t) = CΠT z(t), (2.3b)

with ΠT z(t) = z(t). Because the nullspace of Π is non-trivial the matrix ΠMΠT is
not invertible. Therefore, for Θl,Θr ∈ Rnv×(nv−np) satisfying

ΘT
l Θr = I(nv−np),

we consider the decomposition

Π = ΘlΘ
T
r . (2.4)

3



Since the pencil (2.2) has nv − np finite eigenvalues [17, Theorem 2.1], (2.4) is com-
putable using, for example the singular value decomposition [1]. If we substitute this
decomposition into (2.3) we obtain

ΘT
rMΘr

d

dt
z̃(t) = ΘT

r AΘrz̃(t) + ΘT
r Bu(t), (2.5a)

y(t) = CΘT
r z̃(t), (2.5b)

with z̃ = ΘT
l z ∈ Rnv−np . After replacingM = ΘT

rMΘr,A = ΘT
r AΘr,B = ΘT

r B, and
C = CΘT

r , (2.5) yields

M d

dt
z̃(t) = Az̃(t) + Bu(t), (2.6a)

y(t) = Cz̃(t), (2.6b)

as a generalized state space system with a symmetric positive definite mass matrix
M.

In [22], Heinkenschloss et al. apply balanced truncation model order reduction to
the system in (2.6), which requires computing the controllability and observability
Gramians P̃ , Q̃ ∈ R(nv−np)×(nv−np), which solve the generalized Lyapunov equations

AP̃MT +MP̃AT = −BBT , (2.7)

AT Q̃M+MT Q̃A = −CTC, (2.8)

[22, Section 4]. In the next subsections we show that we have to solve similar equations
for the Riccati-based feedback approach. It is clear that for computational purposes
we do not want to form Π explicitly and we certainly cannot compute the decompo-
sition presented in (2.4). We will later see how we can work with (2.6) implicitly by
solving certain saddle point problems.

2.2. The Feedback Control Approach. For an asymptotic stabilization of
the Stokes equations (1.1), we apply the linear quadratic regulator approach (LQR)
to the system (2.6). An introduction to LQR for state space systems can be found in
[28]. As we consider the generalized state space system (2.6) withM 6= I, we have to
modify the results as carried out in [40, Chapter 5.2]. In summary, we minimize

J (z̃(t),u(t)) =
1

2

∫ ∞
0

z̃(t)TCTCz̃(t) + u(t)Tu(t) dt, (2.9)

with subject to (2.6), which can be achieved by the optimal control defined by

u∗(t) = −BTXM︸ ︷︷ ︸
K

z̃∗(t) = −Kz̃∗(t), (2.10)

with the feedback operator K and X as the solution of the Generalized Algebraic
Riccati Equation (GARE)

0 = CTC +ATXM+MTXA−MTXBBTXM =: R(X). (2.11)

Thus, we have to solve such a non-linear matrix equation to get the optimal control
u∗(t). One way to solve this GARE is described in the next subsection.
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Algorithm 1 Generalized low-rank Cholesky factor ADI iteration (G-LRCF-ADI)

Input: A(m),M,W(m) and shift parameters {q1, . . . , qimax}
Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ X(m+1)

1: V1 =
√
−2 Re (q1)

(
A(m) + q1M

)−T
(W(m))T

2: Z1 = V1
3: for i = 2, 3, . . . , imax do

4: Vi =
√

Re (qi)/Re (qi−1)
(
Vi−1 − (qi + qi−1)

(
A(m) + qiM

)−T
(MTVi−1)

)
5: Zi = [Zi−1 Vi]
6: end for

2.3. Solving Generalized Algebraic Riccati Equation. A common way to
solve the non-linear matrix equation (2.11) is a Newton-type iteration as described in
[2, 26]. The Newton system at step m is given by

X(m+1) = X(m) +N (m), (2.12a)

with the update computed via

R′|X(m)(N (m)) = −R(X(m)), (2.12b)

where R′|X(m) is the Frechét derivative of the Riccati operator (2.11) at X(m) defined
as

R′|X(m) : N (m) 7→ (A− BBTX(m)M)TN (m)M+MTN (m)(A− BBTX(m)M).

Therefore, we have to solve

(A− BBTX(m)M)TN (m)M+MTN (m)(A− BBTX(m)M)

= −CTC − ATX(m)M−MTX(m)A+MTX(m)BBTX(m)M (2.13)

to compute the update N (m) = X(m+1)−X(m). If we plug this expression into (2.13),
we obtain the generalized Lyapunov equation

(A(m))TX(m+1)M+MTX(m+1)A(m) = −(W(m))TW(m), (2.14)

with A(m) = A − BBTX(m)M and a right hand side split into the low-rank factors

W(m) =

[
C

BTX(m)M

]
(see [25]). Equation (2.14) has the same structure as (2.8) and

has to be solved at each Newton step. Hence, the index reduction method in [22] is
applicable.

A solution strategy for this kind of equation is the low-rank ADI iteration [27, 8],
which is extended for the generalized case in [7] as shown in Algorithm 1 using the
above notation. For details of an effective implementation we refer to [40].

Combining the Newton iteration (2.12), as an outer iteration, and the G-LRCF-ADI
(Algorithm 1), as an inner iteration yields the generalized low-rank Cholesky factor
Newton method (G-LRCF-NM) [8, 6, 9].
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Algorithm 2 Generalized low-rank Cholesky factor Newton method for Stokes

Input: M,A,G,B,C, shift parameters {q1, . . . , qnADI
}

Output: feedback operator K
1: K0 = [ ]
2: for m = 1, 2, . . . , nNewton do
3: W (m) =

[
CT (K(m−1))T

]
4: Get V1 by solving[

AT − (K(m−1))TBT + q1M
T G

GT 0

] [
V1
∗

]
=

[√
−2 Re (q1)W (m)

0

]

5: K
(m)
1 = BTV1V

T
1 M

6: for i = 2, 3, . . . , nADI do
7: Get Ṽ by solving[

AT − (K(m−1))TBT + qiM
T G

GT 0

] [
Ṽ
∗

]
=

[
MTVi−1

0

]

8: Vi =
√

Re (qi)/Re (qi−1)
(
Vi−1 − (qi + qi−1)Ṽ

)
9: K

(m)
i = K

(m)
i−1 +BTViV

T
i M

10: if

(
||K(m)

i −K(m)
i−1 ||F

||K(m)
i ||F

< tolADI

)
then

11: break
12: end if
13: end for
14: K(m) = K

(m)
nADI

15: if
(
||K(m)−K(m−1)||F

||K(m)||F
< tolNewton

)
then

16: break
17: end if
18: end for
19: K = KnNewton

In lines 1 and 4 of Algorithm 1 large-scale linear systems of equations involving the
projected matrices have to be solved. Both have the following structure

(
A(m) + qiM

)T
Λ = Y, (2.15)

with different right hand sides Y. Because one neither wants to build the dense
projector ΠT nor its Θ-decomposition, we recall the results in [22, Section 5] which
state that the solution of the Θ-projected equation (2.15) is also a solution of the
Π-projected equation

Π
(
AT −MTX(m)BBT + qiM

T
)
ΠTΛ = ΠY. (2.16)
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With [22, Lemma 5.2], one has to solve the equivalent linear system[
AT −MTX(m)BBT + qiM

T G
GT 0

]
︸ ︷︷ ︸

=:Ã

[
Λ
∗

]
=

[
Y
0

]
, (2.17)

instead of system (2.16). The complete process for computing the feedback operator
K = BTXM is shown in Algorithm 2.

The linear system (2.17) has to be solved in every ADI step. Note that despite the
fact that the discretized diffusion operator A is symmetric, the (1, 1)-block of the
saddle point problem (2.17) is non-symmetric. Furthermore, note that every Newton
step consists of several ADI steps. In the remainder of this paper we show how we
can efficiently solve (2.17).

3. Solving Large-Scale Saddle Point Systems. Linear systems of the form
(2.17) are often referred to as saddle point systems. A comprehensive overview about
the numerical solution of saddle point systems is given in [10]. In the following we
discuss the properties of the linear system (2.17) and our strategy for its efficient
solution.

3.1. Properties of the Saddle Point System. The saddle point system aris-
ing from the feedback control approach for the Stokes equations is of the form (2.17).
Although the matrices A,M and G are sparse, the low rank product KTBT is dense,
and the (1, 1)-block of Ã also becomes dense, making Algorithm 2 inefficient. To
avoid this, we can write system (2.17) in the form of a low rank update([

AT + qiM
T G

GT 0

]
︸ ︷︷ ︸

A

−
[
KT

0

]
︸ ︷︷ ︸

KT

[
BT 0

]︸ ︷︷ ︸
BT

) [
Λ
∗

]
︸︷︷︸

Λ

=

[
Y
0

]
︸︷︷︸

Y

,

or, more compactly,

(A−KTBT )Λ = Y. (3.1)

We then use the Sherman-Morrison-Woodburry formula [20] for the evaluation of
(3.1), that is

(A−KTBT )−1 =
(
Inv

+ A−1KT (Inr
−BTA−1KT )−1BT

)
A−1.

This means, we have to solve for A and the small dense matrix (Inr
−BTA−1KT )

of size nr � nv instead of solving with Ã. Furthermore, we have to solve for A with
the right hand side KT . Therefore, we just add KT as additional nr columns in the

right hand side matrix Y, which results in

[
Y KT

0 0

]
=:

[
Ỹ
0

]
. Because we consider 2

boundary control parameters, nr = 2. Finally, we obtain the saddle point system[
AT + qiM

T G
GT 0

] [
Λ
∗

]
=

[
Ỹ
0

]
, (3.2)

with M = MT � 0, A = AT � 0 and qi < 0, which means the (1, 1)-block of A is
negative definite, whereas the whole matrix A is indefinite. This system has to be
solved for many different right hand sides and a different shift parameter qi in every
ADI-step. Our strategy for computing the solution of (3.2) is discussed next.
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3.2. Preconditioned Iterative Solvers. To solve the system (3.2), we use
iterative methods, instead of direct solvers, because the size of the whole system
n = nv + np becomes too large for usual finite element discretizations. For three-
dimensional problems the fill-in generated by a direct method often allows only small
problems to be solved, meaning that the use of iterative methods is imperative. Never-
theless, in their basic form the performance of iterative methods will deteriorate with
decreasing mesh-size. This can be avoided if a preconditioner P ∈ Rn×n is introduced
and the modified system

P−1Ax = P−1b

is solved instead (see [38, 19]).

If we want to use a symmetric iterative solver (e.g., MINRES [32]) we have to use a
symmetric positive definite preconditioner, such as the one given by

P =

[
−PF 0

0 −PSC

]
[19, Section 6.1], where PF approximates F := AT + piM

T ≺ 0 and PSC := GTF−1G
is the Schur complement, which we can not form explicitly as this would require the
dense matrix F−1 ∈ Rnv×nv . A good approximation for the steady Stokes case with
moderate Reynolds numbers is PSC ≈ − 1

νMp with Mp, the mass matrix, defined
on the pressure space and ν := 1

Re . We could also use a simpler operator, such
as PSC ≈ diag (− 1

νMp). Both can be found in [19, Section 8.2]. We will call these
versions

P̂M :=

[
−PF 0

0 diag ( 1
νMp)

]
and PM :=

[
−PF 0

0 1
νMp

]
.

Note that the matrix F has a form similar to the matrix obtained when the transient
Stokes equation is discretized. Hence, the derivation presented now will somehow
resemble preconditioning for transient Stokes systems.

Another way to approximate PSC will be discussed next. Beforehand, we will show
how to use a non-symmetric iterative method. The obvious advantage is that we
can extend our method to non-symmetric systems that arise for more general Navier-
Stokes systems, which is the long term goal of these investigations. Due to this fact
we denote explicitly AT ,MT in all algorithms, although both matrices are symmetric
in the Stokes case.

A non-symmetric iterative method for the block structured and potentially non-
symmetric matrix

F :=

[
F G
GT 0

]
, with F = AT + qiM

T

is GMRES [39]. Based on the ideas in [19, Section 8.1] we consider the block structured
non-symmetric left preconditioner

PG :=

[
PF 0
GT −PSC

]
⇒ P−1G =

[
P−1F 0

P−1SCG
TP−1F −P−1SC

]
.

Note that in the Stokes case it is possible to use the block-triangular preconditioner
PG within a symmetric iterative method. Namely, a variant of the CG-method [38]
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introduced by Bramble and Pasciak in [13] can be used, which is only slightly more
expensive than MINRES for the same problem.

Applying P−1G from the left to F gives

P−1G F =

[
P−1F F 0

P−1SCG
TP−1F F − P−1SCG

T P−1SCG
TP−1F G

]
. (3.3)

For PF = F and PSC = GTF−1G, (3.3) yields[
F−1F 0

P−1SCG
TF−1F − P−1SCG

T P−1SCG
TF−1G

]
=

[
Inv

0
0 Inp

]
. (3.4)

As before, we cannot form PSC ∈ Rnp×np . Instead we apply the least squares commu-
tator approach based on [19, Section 8.2]. Therefore, we consider a shifted diffusion
operator on the velocity space

F = −ν∇2 + q · I

and suppose that the analogous operator on the pressure space also exists, that is

Fp = (−ν∇2 + q · I)p.

We then define the least squares commutator of the shifted diffusion operators with
the gradient operator

E = (F)∇−∇(Fp),

which should become small in some sense. If we plug in the discrete versions of the
operators we obtain

Eh = (M−1F )M−1G−M−1G(M−1p Fp).

Pre-multiplying this by GTF−1M and post-multiplying by F−1p Mp yields

GTM−1GF−1p Mp ≈ GTF−1G = PSC .

In general it is infeasible to work with GTM−1G as it is a large dense matrix. In [19,
Section 5.5.1] it is shown that this matrix is spectrally equivalent to the Laplacian Sp
defined on the pressure space. Hence, we get

PSC ≈ SpF−1p Mp ⇒ P−1SC ≈M
−1
p FpS

−1
p ,

with Fp, the shifted system matrix, defined on the pressure space. Thus, one has to
solve a pure Neumann problem, defined on the pressure space and formally denoted
as S−1p (as in [12]), multiply this with the system matrix Fp once, and solve a linear
system with symmetric positive definite Mp, to apply the Schur complement approxi-
mation. A similar approach is applied to the incompressible Navier- Stokes equations
in [11].

Note that for the symmetric Stokes case Fp = Ap + qMp the Schur complement
approximation becomes slightly easier [42, Section 3], because the system matrix Ap
is just the negative and scaled stiffness matrix −νSp, such that

PSC ≈ Sp(−νSp + qMp)
−1Mp, (3.5)

⇒ P−1SC ≈M
−1
p (−νSp + qMp)S

−1
p = −νM−1p + qS−1p . (3.6)

9



(0, 1)

(0, 0)

(5, 1)

(5, 0)

Γin Γfeed1 Γfeed2 Γwall Γout

Figure 4.1: Coarsest discretization of von Kármán vortex street with coordinates and
boundary conditions.

Summarizing, we just solve a pure Neumann problem S−1p [12] and a linear system
with the mass matrix Mp. To increase the efficiency of this method we plan to explore
multigrid methods [21, 37] to apply Sp and a Chebyshev semi iteration for Mp in the
future [44]. At the moment we just pin a boundary node in Sp to fix the rank deficiency
and use a direct solver (see, e.g., [12]).

Further details regarding this kind of Schur-complement approximation can be found
in [16] for generalized Stokes systems, in [29, 14] for steady and unsteady Stokes
systems, and in [30] for general partial differential equations. For unsteady Stokes
problems the above approximation is known as the Cahouet-Chabard preconditioner
[16].

In (3.4) we assumed F as the best choice for PF . To get an efficient preconditioner
we want to apply a multigrid approximation of F in the future as well [19, Section
8.3.2]. For the proof of concept we use a sparse direct solver in MATLAB® (via the
”backslash” operator) in the numerical experiments for our proposed preconditioner.

Again, we can use the simple approximation PSC ≈ − 1
νMp and define the precondi-

tioners for the non-symmetric iterative method as

P̂G :=

[
PF 0
GT 1

νMp

]
and PG :=

[
PF 0
GT −Sp(−νSp + qMp)

−1Mp

]
.

We compare both methods with the appropriate preconditioner in the next section.
Additionally, we discuss some problems with the nested iterations and remark on the
numerical realization.

4. Numerical Examples. The example we use for our domain Ω is the von
Kármán vortex street depicted in Figure 4.1. We have a parabolic inflow with a
maximum value of 1.0 at Γin, which has a diameter din = 1. The fluid passes an
elliptic obstacle with the center at the coordinates (1, 0.5), which has a width of 1

5 din
and a height of 1

3 din. The fluid flows out of the domain at Γout without any barrier.
To influence the flow field we can blow in or exhaust fluid on the back of the obstacle
via Γfeed1 ,Γfeed2 . Naturally, we impose no-slip conditions on Γwall.

The matrices for the numerical tests arise from a standard mixed finite element dis-
cretization (e.g., P2-P1Taylor-Hood elements like in Figure 4.2) of Ω. Using a Bänsch-
refinement [5] we get five different magnitudes for nv and np, where every second
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level corresponds to one level of global uniform refinement (see Table 4.1). Figure 4.1
shows the coarsest grid Level 1.

Level nv np
1 3 452 453
2 8 726 1 123
3 20 512 2 615
4 45 718 5 783
5 99 652 12 566

Table 4.1: Levels of refinement

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x6, y6)
(x5, y5)

velocity nodes

pressure nodes

refinement edge

Figure 4.2: P2-P1 Taylor-Hood element

All computations were done with MATLAB R2010b on a 64-bit server with CPU type
Intel® Xeon® X5650 @2.67GHz, with 2 CPUs, 12 Cores (6 Cores per CPU) and 48
GB main memory available.

First, we compare the iterative methods and their preconditioners, defined in Section
3.2, to explain the choice for the tests concerning the parameter dependence of the
nested iteration.

4.1. Solving the Saddle Point System. First, we compare MINRES and
GMRES with the preconditioners defined before. Therefore, the MATLAB imple-
mentations of both methods are used and the preconditioning is realized as function
handles to increase the efficiency.

We use

P̂M : =

[
−PF 0

0 diag ( 1
νMp)

]
, PM : =

[
−PF 0

0 1
νMp

]
for MINRES as symmetric preconditioners and

P̂G : =

[
PF 0
GT 1

νMp

]
, PG : =

[
PF 0
GT −Sp(−νSp + qMp)

−1Mp

]
for GMRES and solve the first Newton step with all methods for an iteration tolerance
of tolsolve SPS = 10−12. This computation includes roughly fifteen ADI steps with
seven right hand sides in system (3.2) in every ADI step. In Figure 4.3 we show the
average number of steps over all these right hand sides on the left, and the average
time over all these right hand sides on the right. The plots are clustered for different
Reynolds numbers and the order of methods is the same as in the legend. GMRES
with PG wins this comparison for each configuration, although every GMRES step
(0.029−0.030 seconds) needs a little bit more time than a MINRES step (0.024−0.025
seconds). Our tests also showed that after a certain point all methods, except GMRES
with PG, showed stagnation of the residual norm. This effect occurs due to the Schur
complement approximation not being sufficiently accurate (see [31]). Moreover, we
observed that this high accuracy is not needed to achieve our main goal, which is to
solve the Newton-ADI iteration (Algorithm 2). The influence of the accuracy of the
saddle point solvers on the convergence of the whole algorithm is presented in the
next subsection.
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Figure 4.3: Compare the different methods with desired tolsolve SPS = 10−12.
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Figure 4.4: Evolution of optimal costs during the Newton iteration (Level 1).

4.2. Nested Iteration. In Algorithm 2 we have a nested iteration with the
outermost Newton iteration, the central ADI iteration, and finally the innermost
iteration, where the saddle point system (3.2) has to be solved at every ADI step.
To compute one Newton step (2.12b) we need a number of ADI steps to reach the
stopping criterion for the Newton iteration tolNewton ≈ 5 · 10−5.

To visualize the convergence we show the evolution of the optimal costs, that is the
value of the cost functional (2.9), in Figure 4.4. This convergence only depends on the
chosen cost functional (2.9) and thereby it is dependent on the problem conditions.

The convergence of the ADI iteration depends heavily on the shift parameters qi.
We use the heuristic Penzl shifts [33] or the Wachspress shifts [43]. Both approaches
achieve similar results and computation times are lower for the Penzl shifts, so we use
this method for the remaining computations with tolADI ≈ 5 · 10−7.
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GMRES PG GMRES P̂G MINRES PM MINRES P̂G

tolsolve SPS nADI time nADI time nADI time nADI time

10−4 > 50 > 159 28 148 29 51 29 59
10−5 26 99 28 189 28 80 26 72

10−6 15 65 20 154 32 133 32 141

10−7 15 72 15 143 29 187 34 215

10−8 15 79 15 171 34 394 34 330

10−9 15 86 15 201 28 389 28 321

10−10 15 92 15 225 20 303 18 223

10−11 15 99 15 245 15 266 15 218

10−12 15 105 15 265 15 315 15 255

direct nADI = 15

(a) Reynolds number 1.

GMRES PG GMRES P̂G MINRES PM MINRES P̂G

tolsolve SPS nADI time nADI time nADI time nADI time

10−4 > 50 > 157 37 181 28 122 35 157

10−5 23 84 28 169 28 175 35 207

10−6 24 101 24 155 28 219 26 188

10−7 15 72 15 127 37 429 37 367

10−8 15 78 15 147 28 393 28 328

10−9 15 85 15 172 24 362 24 308

10−10 15 91 15 196 15 276 15 227

10−11 15 97 15 220 15 317 15 262

10−12 15 105 15 240 15 359 15 295

direct nADI = 15

(b) Reynolds number 10

GMRES PG GMRES P̂G MINRES PM MINRES P̂G

tolsolve SPS nADI time nADI time nADI time nADI time

10−4 > 50 > 166 29 69 25 117 > 50 > 230

10−5 22 82 36 118 43 269 > 50 > 312

10−6 15 64 27 123 43 416 43 369

10−7 15 71 25 164 27 344 27 288

10−8 15 78 20 154 20 290 20 245

10−9 15 85 15 142 15 262 15 214

10−10 15 91 15 168 15 304 15 248

10−11 15 98 15 195 15 349 15 283

10−12 15 106 15 221 15 394 15 316

direct nADI = 15

(c) Reynolds number 100

GMRES PG GMRES P̂G MINRES PM MINRES P̂G

tolsolve SPS nADI time nADI time nADI time nADI time

10−4 > 50 > 172 25 59 34 266 > 50 > 287

10−5 25 98 34 116 34 428 > 50 > 383

10−6 14 60 34 177 31 500 22 239

10−7 14 67 31 220 20 319 20 256

10−8 14 74 20 153 14 260 14 207

10−9 14 80 14 128 14 305 14 241

10−10 14 87 14 153 14 350 14 274

10−11 14 93 14 178 14 391 14 306

10−12 14 101 14 206 14 430 14 334

direct nADI = 14

(d) Reynolds number 1000

Table 4.2: Overview of the influence of tolsolve SPS to ADI convergence for the first
Newton step (Level 1).
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Figure 4.5: Relatively preconditioned residuals of GMRES with PG for refinement
levels of Table 4.1 during the first Newton step (Re = 10).

Depending on how accurately the saddle point system is solved at every ADI step,
we need more or less ADI steps to reach this tolerance. In Table 4.2 we compare the
number of ADI steps and the required computation time in relation to the achieved
tolerance tolsolve SPS for the methods and preconditioners defined before. We com-
puted these results for different Reynolds numbers and summarized them in different
sub-tables. In the bottom line of every table we put the number of ADI steps for a
direct solver as a reference level, while assuming the direct solver reaches the high-
est accuracy in the ADI iteration. The best configurations are plotted in boldface.
We notice that the configuration of GMRES with PG is the best choice on average,
although the other methods are sometimes faster. This configuration reaches the
smallest number of ADI steps first that we would obtain using a direct solver. At this
point the number of ADI steps does not decrease if we increase the accuracy further.
So we do not necessarily need the highest accuracy we could achieve.

Additionally, there is a lower bound for the accuracy to have convergence at all
(maxnADI = 50). For this level of refinement the direct solver is of course much
faster than our iterative method, because the number of unknowns is comparably
small. Based on this observation and the fact that we want to deal with the Navier-
Stokes equations in the future, we use GMRES as the iterative method in all further
considerations and show more parameters which influence convergence.

4.3. Parameter Dependence. First, in Figure 4.5 the relative preconditioned
residuals of GMRES with PG are listed for the different levels of refinement in Table
4.1. We plotted the best case and the worst case as residual vectors, and the average
over the final residuals as markers. Notice that, the best cases need nearly the same
numbers of steps (around 10 steps). However, in the worst case the numbers of steps
varies between 42 and 75 steps. On average, the number of steps for various levels of
refinement seem almost constant (between 21 and 37).
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Figure 4.6: Condition number of A concerning the ADI shifts during the first Newton
step for refinement levels of Table 4.1 (Re = 10).

Figure 4.6 gives an explanation for the larger variation in the worst case. The condition
number of matrix A, for which we solve the saddle point systems, increases as we
refine our mesh. In detail, the condition number roughly scales up with a factor of
10 for each refinement level. Considering this fact, we have a robust (with respect to
the mesh parameter), preconditioned, iterative method to solve saddle point systems
like (3.2).

Two further parameters which influence the properties of the saddle point system are
the Reynolds number and the ADI shift. For different Reynolds numbers we get a
different system matrix A and also different Schur complement approximations (3.6).
The influence of the Reynolds number concerning the various methods was already
shown in Figure 4.3a, where we evaluated the performance of the various precon-
ditioners. Figure 4.7a shows the influence of the Reynolds number for refinement
Level 1. We averaged the number of GMRES steps over all right hand sides, which
appear during the first Newton step. We see that we need nearly the same amount
of iterations if we vary Re for PG. In contrast, we need more iterations for smaller
Reynolds numbers if we use P̂G. This behavior seems non natural if we observe the
construction of the preconditioners and needs further investigation.

The second parameter, which changes during Algorithm 2 in each ADI step, is the ADI
shift qi. Again, this change influences the saddle point system itself and also the least
squares Schur complement approximation (3.6). Figure 4.7b shows the dependence of
the number of iterations on ADI shifts qi for refinement Level 1 and Re = 10, where
qi are the shifts used in the first Newton step. In contrast to the Reynolds number,
we notice that we need more iterations if we increase the absolute value of qi for PG.
But again we have worse results if we use P̂G. Unfortunately, we cannot influence
the absolute value of the shift too much, because both shift concepts create a similar
distribution of shifts.
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Figure 4.7: Number of GMRES iterations influenced by different parameters.

Finally, we note that all results shown here point out that the use of GMRES with
the PG preconditioner is the best choice for solving the saddle point systems (3.2)
arising in the Riccati feedback stabilization approach (2.10) for the Stokes equations
(1.1). We believe that this preconditioner in combination with the Bramble-Pasciak
CG-method would perform equally well [13].

5. Conclusion and Outlook. In this paper we have shown how we can use
the idea of index reduction for balanced truncation model order reduction [22] to
derive a numerical realization of the Leray projector. This projector is the main tool
of the analytical approach for Riccati-based boundary feedback stabilization of flow
problems in [35]. We have considered the Stokes flow as a first example towards
a thorough numerical investigation. To compute the optimal control we have to
solve an algebraic Riccati equation corresponding to the projected system. We have
applied a Newton type method for solving this Riccati equation. The Lyapunov
equations arising in each Newton step have been solved with a low-rank version of the
Alternating Direction Implicit (ADI) method. Avoiding the explicit projection leads
to large-scale saddle point systems, which have to be solved, in the central loop of
this nested iteration.

We have pointed out the properties of these resulting saddle point systems and have
introduced an efficient way to solve such equations. To this end, we have investigated
preconditioners to be used in iterative methods based on the ideas of Wathen et al.
[19, 42]. As major result we could adapt known Schur complement approximations
to our problem setting.

We have illustrated the influence of the arising parameters with numerical examples
to compare the different variants of preconditioned Krylov solvers. We have shown
the interactions of the nested iterations. Summarizing the test results, we could point
out a fast set up for these kinds of problems.

In the future, we will deal with the non-symmetric Navier-Stokes flow and explore
in detail the additional difficulties arising there. The most important facts will be
the ADI shift computation for the non-symmetric Navier Stokes case, as well as the
instability of these systems.
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We will further investigate the acceleration of the iterative solvers in order to deal
with multiple right hand sides, which is an advantage of the direct solvers that solve
them almost simultaneously.

Acknowledgments. The work presented in this paper is developed within the
project Optimal Control-Based Feedback Stabilization in Multi-Field Flow Problems.
The project is a joint work with Eberhard Bänsch and is part of the DFG priority
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